

 Navigation

 	
 index

 	soap 0.1a documentation

Welcome to Soap’s Documentation!

Soap is a validation library heavily adapted from Colander, another library with similar intentions. As you’re creating
web applications, you undoubtedly reach a point where you’re accepting data from HTML POST forms or from AJAX requests.
The data users enter needs to be validated before it is put into a database, for both security and data integrity
reasons. Additionally, you might want to alter a user’s data to match a specific format, such as trimming leading
and trailing whitespace, in a consistent manner. This is where a library such as Colander/Soap comes in. Just so you’re
forwarned, Colander is a two year project in the making, so it is definitely far more mature than Soap. I created Soap
because I am currently doing a project that I am heavily organizing around the data model, and I wanted to be able
to configure my validation library to accommodate the large range of different relationships that occur between
my data structures. This is something that Colander is only semi-capable of achieving. Let’s look at how you use Soap:

Schema Configuration(Imperative)

Soap allows you to define a number of schemas, and then use those schemas to validate a Python dict. Like Colander, Soap is
capable of being configuring schemas both imperatively and declaratively. Let’s take a look at the imperative configuration
first, it will look something like this:

from soap import (
 SchemaMode,
 Mapping,
 SchemaNode,
 Int,
 String
)

TestSchema = SchemaModel('TestSchema',
 Mapping(),
 SchemaNode(Int(), name='id'),
 SchemaNode(String(), name='name', missing=''))

As you can see, you need to create an instance of soap.SchemaModel to create a schema. soap.SchemaModel takes the
name of the schema as its first argument, the type of schema as its second argument, and its child soap.SchemaNode`s as
its successive arguments. Each :class:`soap.SchemaNode takes a type for its first argument, in this case an instance of
soap.Int and soap.String, and additionally the following kwargs:

	name

	The name of the current node. Represented by a key in the value being deserialized.

	missing

	The value that is given to the specified node if it is missing.

	validator

	A single validator or a list of validators that will be used to make sure that the data is both safe and of the correct
format.

	preparer

	A single preparer or a list of preparer that will be used to alter the data in a specific way, to the application
developers liking. For example, removing any unnecessary newlines would be done with a preparer.

Once a schema is defined, then we want to deserialize it. This function call will insert any missing values, run all of the specified
preparers, run all of the specified validators, and make sure all required data is given. At any point during this process, if something
fails, a soap.Invalid exception is thrown.

json = {
 'id': '0',
 'name': 'jayd3e'
}

payload = TestSchema.deserialize(json)
payload = {
'id': 0,
'name': 'jayd3e'
}

Notice how the ‘0’ gets changes to an integer? Thus becoming 0. This example isn’t very exciting, but it lays out the general process for
using Soap, define a schema, pass your user created data into the deserialize function, receive some validated output. There
is the additional step of handling errors, but we can get to that in a second.

Schema Configuration(Declarative)

If you have ever used SQLAlchemy, you are probably very familiar with the declarative style of model configuration. With Soap, you can
configure your schemas in a similar style. They end up looking something like this:

from soap import (
 SchemaMode,
 Mapping,
 SchemaNode,
 Int,
 String,
 Boolean,
 DateTime
)

class TestSchema(SchemaModel):
 id = SchemaNode(Int())
 name = SchemaNode(String())
 booly = SchemaNode(Boolean())
 datey = SchemaNode(DateTime())

Here we introduced the declarative style of configuring Soap, as well as a couple new datatypes, soap.Boolean and soap.DateTime.
These two configuration mechanisms effectively create the same thing, except just using different styles. To deserialize this schema, we would do
the following:

json = {
 'id': 0,
 'name': 'blah',
 'booly': 'true',
 'datey': '2007-01-25T12:00:00Z'
}

schema = TestSchema()
payload = schema.deserialize(json)
payload = {
'id': 0,
'name': 'blah',
'booly': True,
'datey': date
}

It should be noted that you can use all of Soap’s functionality regardless of which configuration style your’re using, but for the rest of the docs,
I plan on using the declarative style.

Relationships

Relationships are where Soap really shines in comparison to Colander. Soap allows you to define SQLAlchemy-like relationships between your Schemas,
so you can reuse ALL of your defined schemas. This is ideal for advanced relationships between data structures. We can achieve this by creating
soap.SchemaNode`s with the :class:`soap.Relationship type. To configure some relationships, do something like this:

from soap import (
 SchemaMode,
 Mapping,
 SchemaNode,
 Int,
 String,
 Boolean,
 DateTime
)

class ChildSchema(SchemaModel):
 id = SchemaNode(Int())
 name = SchemaNode(String())
 parent_node = SchemaNode(Relationship('TestSchema', uselist=False), missing={})

class TestSchema(SchemaModel):
 id = SchemaNode(Int())
 name = SchemaNode(String())
 booly = SchemaNode(Boolean())
 datey = SchemaNode(DateTime())
 sub_node = SchemaNode(Relationship('ChildSchema', uselist=False), missing={})
 sub_seq_nodes = SchemaNode(Relationship('ChildSchema'), missing=[])

So here we took our TestSchema from before, and added a ChildSchema. We then define three total relationships between them. We want to have a field named
sub_node in TestSchema that contains a single instance of ChildSchema, and a field named sub_seq_nodes that contains a list of ChildSchemas.
Notice that in order to specify that we only want a single ChildSchema stored under sub_node we set the uselist kwarg of soap.Relationship to False.
Additionally, we also mention that each ChildSchema should have a parent_node field that contains a single TestSchema. This will result in the following
deserialization:

json = {
 'id': 0,
 'name': 'blah',
 'booly': 'true',
 'datey': date_str,
 'sub_node': {
 'id': 0,
 'name': 'sub_blah',
 'del_key': 'this key should get removed'
 },
 'sub_seq_nodes': [{
 'id': '0',
 'name': 'sub_seq_blah_0',
 'parent_node': {
 'id': 0,
 'name': 'blah',
 'booly': 'false',
 'datey': date_str
 },
 'del_key': 'this key should be removed'
 },
 {
 'id': 1,
 'name': 'sub_seq_blah_1'
 }]
}

schema = TestSchema()
payload = schema.deserialize(json)
payload = {
'id': 0,
'name': 'blah',
'booly': True,
'datey': date,
'sub_node': {
'id': 0,
'name': 'sub_blah',
'parent_node': {}
},
'sub_seq_nodes': [{
'id': 0,
'name': 'sub_seq_blah_0',
'parent_node': {
'id': 0,
'name': 'blah',
'booly': False,
'datey': date,
'sub_seq_nodes': [],
'sub_node': {}
}
}, {
'parent_node': {},
'id': 1,
'name': 'sub_seq_blah_1'
}]
}

Validators

 Copyright 2012, Joe Dallago.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	soap 0.1a documentation

Index

 M
 | N
 | P
 | V

M

 	

 	missing

N

 	

 	name

P

 	

 	preparer

V

 	

 	validator

 Copyright 2012, Joe Dallago.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		soap 0.1a documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Joe Dallago.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

